UGA researchers find hormone receptor that allows mosquitoes to reproduce

Mosquitoes in Mark Brown’s lab-h.photo

April 8, 2015

Print
Share    
Writer:
J. Merritt Melancon

J. Merritt Melancon

Public relations coordinator

Recent and archived articles by J. Merritt Melancon

Office of Communications and Creative Services
College of Agricultural and Environmental Sciences
Work: 706-542-9724
Email:
Mark Brown

Mark Brown

Professor of entomology

Recent and archived articles by Mark Brown


Entomology, Department of
Work: 706-542-2317
Email:

Contact:
Kevin Vogel

Kevin Vogel

Postdoctoral fellow, entomology


Entomology, Department ofCollege of Agricultural and Environmental Sciences
Michael Strand

Michael Strand

Regent's Professor, entomology


Entomology, Department ofCollege of Agricultural and Environmental Sciences
Work: 706-583-8237
Email:

Photography

  • magnify Mosquitoes in Mark Brown’s lab-h.photo

    Mosquitoes feed on sugar water in Mark Brown's endocrinology lab at the University of Georgia. (Credit: April Sorrow/UGA)

Scroll Left 1 Scroll Right

Related Sites

Athens, Ga. - University of Georgia entomologists have unlocked one of the hormonal mechanisms that allow mosquitoes to produce eggs.

The results provide insight into how reproduction is regulated in female mosquitoes, which transmit agents that cause malaria and other diseases in humans and domestic animals. Their work was published in the April edition of the Proceedings of the National Academy of Sciences.

The model for this research is the yellow fever mosquito, Aedes aegypti. Females have to consume a blood meal before they are able to produce a batch of eggs. The blood meal triggers the mosquito's brain to release two hormones, an insulin-like peptide known as ILP and an ovary ecdysteroid-ogenic hormone known as OEH, which activate processes in the female mosquito that result in mature eggs.

Many hormones, including OEH and ILP, act through receptors on the surface of cells. In 2008, study co-authors Mark Brown, a professor of entomology, and Michael Strand, a Regent's Professor, characterized the receptor for ILP in mosquitoes, which helped reveal many details about its role in egg formation. OEH plays an equally important role in female reproduction, but its receptor was more difficult to identify.

"From previous work, we knew that the fruit fly Drosophila melanogaster does not produce OEH. A different group of fruit flies, including Drosophila mojavensis—as well as all mosquitoes we had genomes for—do have OEH," said the study's lead author Kevin Vogel, a postdoctoral fellow also in the College of Agricultural and Environmental Sciences' entomology department.

"Most hormones bind a single receptor, so we hypothesized that an OEH receptor should be found in mosquito genomes as well as Drosophila mojavensis, but not in the genome of Drosophila melanogaster."

By identifying and comparing the sequences of more than 400 receptors in the genomes of two fruit flies and three mosquito species, they identified a single gene for a receptor with an unknown function within the species distribution they expected.

By targeting the gene encoding the receptor, the authors found that disabling its expression inhibited the mosquitoes' ability to produce eggs after a blood meal.

"This receptor fills a major gap in our understanding of the regulation of mosquito reproduction," Strand said. "Going forward, we are well positioned to better characterize the steps leading to egg production and potentially identify points at which we can disrupt reproduction and control mosquito populations."

The study is available online at www.pnas.org/content/early/2015/04/02/1501814112. Research reported in this release was supported by the National Institutes of Health under grant numbers R01AI033108 to Brown and Strand and F32GM109750 to Vogel.

For more information on the UGA department of entomology, see www.ent.uga.edu.

 

Filed under: Environment

Media Relations

Executive Director for Media Communications
Greg Trevor

706 / 542-8025
Executive Editor for Media Relations
David Bill

706 / 542-9150
Media Relations Coordinator
Sara Freeland

706 / 542-8077
Media Relations Coordinator for Broadcast
Melissa Jackson

706 / 542-8089

Open Records

Open Records Manager
Bob Taylor

706 / 542-8095