UGA researchers discover potential treatment for drug-resistant tuberculosis

Nair, Vasu-H.Env.Portrait

February 19, 2015

James Hataway

James Hataway

Public Relations Coordinator

Recent and archived articles by James Hataway

Division of Marketing & Communications
Work: 706-542-6927

Vasu Nair

Vasu Nair

Director, UGA Center for Drug Discovery; Associate Dean for Research, College of Pharmacy

Drug Discovery, Center forCollege of Pharmacy
Work: 706-542-6293


  • magnify Nair, Vasu-H.Env.Portrait

    Vasu Nair

Scroll Left 1 Scroll Right

Related Sites

Athens, Ga. - Researchers at the University of Georgia have developed a new small molecule drug that may serve as a treatment against multi-drug resistant tuberculosis, a form of the disease that cannot be cured with conventional therapies. They describe their findings in a paper published recently in Bioorganic and Medicinal Chemistry Letters.

Nine million people contracted tuberculosis in 2013, and 1.5 million died from the disease, according to the World Health Organization. While standard anti-TB drugs can cure most people of Mycobacterium tuberculosis infection, improper use of antibiotics has led to new strains of the bacterium resistant to the two most powerful medications, isoniazid and rifampicin.

"Multi-drug resistant TB is spreading rapidly in many parts of the world," said Vasu Nair, Georgia Research Alliance Eminent Scholar in Drug Discovery in the UGA College of Pharmacy and lead author of the paper. "There is a tremendous need for new therapies, and we think our laboratory has developed a strong candidate that disrupts fundamental steps in the bacterium's reproduction process."

Just like other living organisms, the genetic information contained in M. tuberculosis undergoes a complex process known as transcription in which the bacterial enzyme, DNA-dependent RNA polymerase, or RNAP, produces TB RNA. This molecule is involved in processes that produce critical bacterial proteins that the organism needs to survive.

The compound Nair and his colleagues developed works by binding to magnesium and specific amino acids found within the bacterium, interrupting the production of RNA.

"The compound we developed strongly inhibits the growth of the bacterium and renders it incapable of reproducing and spreading infection," said Nair. "More importantly, the compound shows very low levels of cytotoxicity, which means that it is not harmful to the body."

The research team members also performed extensive studies to determine if their newly developed compound had an appropriately long half-life and could be cleared from the body through normal biochemical mechanisms.

"All our tests were very favorable," Nair said. "The half-life is a little over 14 hours, and all traces of the drug are expected to be cleared through normal bodily functions."

While Nair and his colleagues were pleased with their new compound, they were surprised to discover through preliminary experiments that it also exhibited strong anti-HIV properties, opening the door for dual therapeutic applications.

A dual-purpose drug would be a windfall for clinicians, because the risk for developing TB is between 26 and 31 times greater in people living with HIV than those without HIV infection, according to the WHO.

"This discovery of dual activity against both retroviruses and drug-resistant gram-positive bacteria is unique and opens a new chapter in drug discovery in this area," Nair said.

Innovation Gateway, UGA's technology licensing office, is seeking commercial partners to help develop this drug. A license would include humanitarian licensing terms to help ensure access to the drug by people in need at an affordable cost.

A full version of the paper is available at

Research reported in this news release was supported by the National Institutes of Health under grant number R01AI43181.


Filed under: Culture / Living, Nutrition, Diet, and Health, Medical Science, Health Sciences, Infectious Diseases, Pharmaceuticals

Media Relations

Executive Director for Media Communications
Greg Trevor

706 / 542-8025
Executive Editor for Media Relations
David Bill

706 / 542-9150
Media Relations Coordinator
Sara Freeland

706 / 542-8077
Media Relations Coordinator for Broadcast
Melissa Jackson

706 / 542-8089

Open Records

Open Records Manager
Bob Taylor

706 / 542-8095