Campus News

Study suggests vitamin therapy may promote disease progression in tumors of breast cancer patients

A UGA study indicates that a common vitamin used to treat breast cancer victims might actually be harmful to patients. The study, by Jason Zastre, an assistant professor in the College of Pharmacy, was published in the December issue of Cancer Biology and Therapy.

Zastre’s studies focus on the uptake and function of thiamine, or vitamin B1, which is essential for the functioning of the heart, muscles and nervous system, and helps the body’s cells convert carbohydrates, including glucose, into energy.

“Supplemental thiamine therapy is often recommended when breast cancer patients suffer from anemia caused by their chemotherapy treatment,” said Zastre. “Taking thiamine helps maintain red blood cell function so the body can ward off anemia and other deleterious effects that result from thiamine deficiencies commonly associated with cancer.”

Supplementation of thiamine in advanced breast cancer patients, however, might prove to be harmful and actually promote disease progression of solid tumors, according to Zastre, whose research has revealed findings about thiamine uptake by cancer cells that have never been previously published.

Tumor cells, in general, use glucose in conjunction with oxygen to produce energy for rapid cell growth, he said. In solid tumors, such as breast cancer, the rapid and continuous cell proliferation within the tumors can lead to an underdeveloped and dysfunctional vascular network throughout the tumor. The result is hypoxia, a condition in which cancer cells are subjected to a reduced oxygen supply since they are not in close proximity to blood vessels. These hypoxic regions within the tumor can enhance the aggressiveness of cancer, increase its potential to metastasize or cause disease relapse.

Hypoxic stress also causes a metabolic shift within the cells, which then require additional nutrients and growth factors, such as thiamine, for them to adapt and survive in the low oxygen environment. Zastre’s research focuses on what transpires during the metabolic shift in a hypoxic environment and what nutrients are involved in the process.