Using nanotechnology and a patented signal enhancing technique developed at UGA, researchers have discovered a rapid, sensitive and cost-effective method to detect and identify a number of rotavirus strains and genotypes in less than one minute with greater than 96 percent accuracy.
In their study, Ralph A. Tripp and Jeremy D. Driskell, researchers in the College of Veterinary Medicine’s department of infectious diseases, and Yiping Zhao and Richard Dluhy, researchers in the Franklin College of Arts and Sciences’ departments of physics and chemistry, utilized surface enhanced Raman scattering, or SERS, to detect and quantify Group A rotaviruses.
Group A rotaviruses are the leading cause of severe gastroenteritis in infants and young children, infecting approximately 130 million children annually. Rotavirus infections are responsible for approximately 2 million hospitalizations and more than 500,000 deaths each year.
Clinical diagnostic tests currently used to detect rotavirus do not provide information on the genotypes, which is essential for aiding public health officials in monitoring epidemics, identifying novel strains and controlling disease.
Tripp and Driskell worked with the most commonly identified strains of rotavirus, provided by Carl D. Kirkwood of the Murdoch Childrens Research Institute, at the Royal Children’s Hospital in Parkville, Australia, to show that SERS can detect and identify numerous virus strains and genotypes in less than 30 seconds, without the need to amplify the analyte for detection. Their technique requires no or minimal specimen preparation for analysis and uses minimal volumes of analyte.